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NAVY ELECTRICITY AND ELECTRONICS TRAINING 
SERIES 

The Navy Electricity and Electronics Training Series (NEETS) was developed for use by 
personnel in many electrical and electronic-related Navy ratings. Written by, and with the 
advice of, senior technicians in these ratings, this series provides beginners with 
fundamental electrical and electronic concepts through self-study. The presentation of 
this series is not oriented to any specific rating structure, but is divided into modules 
containing related information organized into traditional paths of instruction. 

The series is designed to give small amounts of information that can be easily digested 
before advancing further into the more complex material. For a student just becoming 
acquainted with electricity or electronics, it is highly recommended that the modules be 
studied in their suggested sequence.  

Considerable emphasis has been placed on illustrations to provide a maximum amount of 
information. In some instances, knowledge of basic algebra may be required. 

Course descriptions and ordering information may be found at https://www.netc.navy.mil 
then click on the Programs tab, then select the Nonresident Training Courses from the 
list. 

Throughout the text of this course and while using technical manuals associated with the 
equipment you will be working on, you will find the below notations at the end of some 
paragraphs. The notations are used to emphasize that safety hazards exist and care must 
be taken or observed. 

WARNING 

AN OPERATING PROCEDURE, PRACTICE, OR CONDITION, ETC., WHICH MAY 
RESULT IN INJURY OR DEATH IF NOT CAREFULLY OBSERVED OR 
FOLLOWED. 

CAUTION 

AN OPERATING PROCEDURE, PRACTICE, OR CONDITION, ETC., WHICH MAY 
RESULT IN DAMAGE TO EQUIPMENT IF NOT CAREFULLY OBSERVED OR 
FOLLOWED. 

NOTE 

An operating procedure, practice, or condition, etc., which is essential to emphasize. 
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NEETS MODULE 18-Radar Principles 

1 RADAR FUNDAMENTALS 

LEARNING OBJECTIVES 

After you finish this chapter, you should be able to do the following: 

1. Define range, bearing, and altitude as they relate to a radar system.
2. Discuss how pulse width, peak power, and beam width affect radar performance.
3. Describe the factors that contribute to or detract from radar accuracy.
4. Using a block diagram, describe the basic function, principles of operation, and

interrelationships of the basic units of a radar system.
5. Explain the various ways in which radar systems are classified, including the

standard Army/Navy classification system.
6. Explain the basic operation of cw, pulse, and Doppler radar systems.

1.1 INTRODUCTION TO RADAR FUNDAMENTALS 

The term RADAR is common in today’s everyday language. You probably use it yourself 
when referring to a method of recording the speed of a moving object. The term Radar is 
an acronym made up of the words radio detection and ranging. The term is used to refer 
to electronic equipment that detect the presence, direction, height, and distance of objects 
by using reflected electromagnetic energy. Electromagnetic energy of the frequency used 
for radar is unaffected by darkness and also penetrates weather to some degree, 
depending on frequency. It permits radar systems to determine the positions of ships, 
planes, and land masses that are invisible to the naked eye because of distance, darkness, 
or weather. 

The development of radar into the highly complex systems in use today represents the 
accumulated developments of many people and nations. The general principles of radar 
have been known for a long time, but many electronics discoveries were necessary before 
a useful radar system could be developed. World War II provided a strong incentive to 
develop practical radar, and early versions were in use soon after the war began. Radar 
technology has improved in the years since the war. We now have radar systems that are 
smaller, more efficient, and better than those early versions. 

Modern radar systems are used for early detection of surface or air objects and provide 
extremely accurate information on distance, direction, height, and speed of the objects. 
Radar is also used to guide missiles to targets and direct the firing of gun systems. Other 
types of radar provide long-distance surveillance and navigation information. 
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NEETS MODULE 18-Radar Principles 

1.2 BASIC RADAR CONCEPTS 

The electronics principle on which radar operates is very similar to the principle of 
sound-wave reflection. If you shout in the direction of a sound-reflecting object (like a 
rocky canyon or cave), you will hear an echo. If you know the speed of sound in air, you 
can then estimate the distance and general direction of the object. The time required for a 
return echo can be roughly converted to distance if the speed of sound is known. Radar 
uses electromagnetic energy pulses in much the same way, as shown in figure 1-1. The 
radio-frequency (rf) energy is transmitted to and reflects from the reflecting object. A 
small portion of the energy is reflected and returns to the radar set. This returned energy 
is called an ECHO, just as it is in sound terminology. Radar sets use the echo to 
determine the direction and distance of the reflecting object. 

NOTE: The terms TARGET, RETURN, ECHO, CONTACT, OBJECT, and 
REFLECTING OBJECT are used interchangeably throughout this module to indicate a 
surface or airborne object that has been detected by a radar system. 

Figure 1-1 Radar echo 
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NEETS MODULE 18-Radar Principles 

Radar systems also have some characteristics in common with telescopes. Both provide 
only a limited field of view and require reference coordinate systems to define the 
positions of detected objects. If you describe the location of an object as you see it 
through a telescope, you will most likely refer to prominent features of the landscape. 
Radar requires a more precise reference system. Radar surface angular measurements are 
normally made in a clockwise direction from TRUE NORTH, as shown in figure 1-2, or 
from the heading line of a ship or aircraft. The surface of the earth is represented by an 
imaginary flat plane, tangent (or parallel) to the earth’s surface at that location. This plane 
is referred to as the HORIZONTAL PLANE. All angles in the up direction are measured 
in a second imaginary plane that is perpendicular to the horizontal plane. 

This second plane is called the VERTICAL PLANE. The radar location is the center of this 
coordinate system. The line from the radar set directly to the object is referred to as the 
LINE OF SIGHT (los). The length of this line is called RANGE. The angle between the 
horizontal plane and the los is the ELEVATION ANGLE. The angle measured clockwise 
from true north in the horizontal plane is called the TRUE BEARING or AZIMUTH 
angle. These three coordinates of range, bearing, and elevation describe the location of an 
object with respect to the antenna. 

Figure 1-2 Radar reference coordinates 
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NEETS MODULE 18-Radar Principles 
Q1. Radar surface-angular measurements are referenced to true north and measured in 
what plane? 

Q2. The distance from a radar set to a target measured along the line of sight is 
identified by what term? 

1.2.1 Range 

Radar measurement of range, or distance, is made possible because of the properties of 
radiated electromagnetic energy. This energy normally travels through space in a straight 
line, at a constant speed, and will vary only slightly because of atmospheric and weather 
conditions. The effects atmosphere and weather have on this energy will be discussed 
later in this chapter; however, for this discussion on determining range, these effects will 
be temporarily ignored. 

Electromagnetic energy travels through air at approximately the speed of light, which is 
186,000 STATUTE MILES per second. The Navy uses NAUTICAL MILES to calculate 
distances; 186,000 statute miles is approximately 162,000 nautical miles. While the 
distance of the statute mile is approximately 5,280 feet, the distance for a nautical mile is 
approximately 6,080 feet. 

Radar timing is usually expressed in microseconds. To relate radar timing to distances 
traveled by radar energy, you should know that radiated energy from a radar set travels at 
approximately 984 feet per microsecond. With the knowledge that a nautical mile is 
approximately 6,080 feet, we can figure the approximate time required for radar energy 
to travel one nautical mile using the following calculation: 
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NEETS MODULE 18-Radar Principles 

The same answer can be obtained using yards instead of feet. In the following 
calculation, the 6,080 foot approximation of a nautical mile is converted to 2,027 yards 
and energy speed is changed from 984 feet to 328 yards per microsecond: 

A pulse-type radar set transmits a short burst of electromagnetic energy. Target range is 
determined by measuring elapsed time while the pulse travels to and returns from the 
target. Because two-way travel is involved, a total time of 12.36 (6.18 x 2) microseconds 
per nautical mile will elapse between the start of the pulse from the antenna and its return 
to the antenna from a target. This 12.36 microsecond time interval is sometimes referred 
to as a RADAR MILE, RADAR NAUTICAL MILE, or NAUTICAL RADAR MILE. 
The range in nautical miles to an object can be found by measuring the elapsed time 
during a round trip of a radar pulse and dividing this quantity by 12.36. In equation form, 
this is: 
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NEETS MODULE 18-Radar Principles 

For example, if the elapsed time for an echo is 62 microseconds, then the distance is 5 
miles, as shown in the following calculation: 

NOTE: Unless otherwise stated all distances will be expressed as nautical miles 
throughout this module. 

1.2.1.1 Minimum Range 

Recall from NEETS, Module 11, Microwave Principles, that the DUPLEXER alternately 
switches the antenna between the transmitter and receiver so that only one antenna need 
be used. This switching is necessary because the high-power pulses of the transmitter 
would destroy the receiver if energy were allowed to enter the receiver. As you probably 
already realize, timing of this switching action is critical to the operation of the radar 
system. What you may not realize is that the minimum range ability of the radar system is 
also affected by this timing. The two most important times in this action are PULSE 
WIDTH and RECOVERY TIME. 

This timing action must be such that during the transmitted pulse (pulse width), only the 
transmitter can be connected to the antenna. Immediately after the pulse is transmitted, 
the antenna must be reconnected to the receiver. 

The leading edge of the transmitted pulse causes the duplexer to align the antenna to the 
transmitter. This action is essentially instantaneous. At the end of the transmitted pulse, 
the trailing edge of the pulse causes the duplexer to line up the antenna with the receiver; 
however, this action is not instantaneous. A small amount of time elapses at this point 
that is referred to as recovery time. 
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Therefore, the total time in which the receiver is unable to receive the reflected pulse is 
equal to the pulse width plus the recovery time. Note that any reflected pulses from close 
targets returning before the receiver is connected to the antenna will be undetected. The 
minimum range, in yards, at which a target can be detected is determined using the 
following formula (pulse width and recovery time are expressed in microseconds or 
fractions of microseconds): 

For example, minimum range for a radar system with a pulse width of 25 microseconds 
and a recovery time of 0.1 microseconds is figured as follows: 

Most modern radar systems are designed with such small recovery times that this figure 
can often be ignored when figuring minimum range. 

1.2.1.2 Maximum Range 

The maximum range of a pulse radar system depends upon CARRIER FREQUENCY, 
PEAK POWER of the transmitted pulse, PULSE-REPETITION FREQUENCY (prf) or 
PULSE REPETITION RATE (prr), and RECEIVER SENSITIVITY with prf as the 
primary limiting factor. The peak power of the pulse determines what maximum range 
the pulse can travel to a target and still return a usable echo. A usable echo is the smallest 
signal detectable by a receiver system that can be processed and presented on an 
indicator. 
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The frequency of the rf energy in the pulse radiated by a radar is referred to as the 
CARRIER FREQUENCY of the radar system. The carrier frequency is often a limiting 
factor in the maximum range capability of a radar system because radio frequency energy 
above 3,000 megahertz is rapidly attenuated by the atmosphere. This decreases the usable 
range of radio-frequency energy. Therefore, as the carrier frequency is increased, the 
transmitted power must also be increased to cover the same range. Long-range coverage 
is more easily achieved at lower frequencies because atmospheric conditions have less 
effect on low-frequency energy. 

Radar systems radiate each pulse at the carrier frequency during transmit time, wait for 
returning echoes during listening or rest time, and then radiate a second pulse, as shown 
in figure 1-3. The number of pulses radiated in one second is called the pulse-repetition 
frequency (prf), or the pulse-repetition rate (prr). The time between the beginning of one 
pulse and the start of the next pulse is called PULSEREPETITION TIME (prt) and is 
equal to the reciprocal of prf as follows: 

AMBIGUOUS RETURNS.—The radar timing system must be reset to zero each time a 
pulse is radiated. This is to ensure that the range detected is measured from time zero 
each time. The prt of the radar becomes important in maximum range determination 
because target return times that exceed the prt of the radar system appear at incorrect 
locations (ranges) on the radar screen. Returns that appear at these incorrect ranges are 
referred to as AMBIGUOUS RETURNS or SECOND-SWEEP ECHOES. 

Figure 1-3 Radar pulse relationships 
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Figure 1-4 illustrates a radar system with a 1 millisecond prt. The pulses are shown at the 
top, and examples of two transmitted pulses hitting targets and returning are shown at the 
bottom. In the case of target A, the pulse travels round trip in 0.5 millisecond, which 
equates to a target range of 82,000 yards. Since 0.5 millisecond is less than 1 millisecond, 
displaying a correct range is no problem. However, target B is 196,800 yards distant from 
the radar system. In this case, total pulse travel time is 1.2 milliseconds and exceeds the 
prt limitation of 1 millisecond for this radar. While the first transmitted pulse is traveling 
to and returning from target B, a second pulse is transmitted and the radar system is reset 
to 0 again. The first pulse from target B continues its journey back to the radar system, 
but arrives during the timing period for the second pulse. This results in an inaccurate 
reading. In this case, the first return pulse from target B arrives 0.2 millisecond into the 
second timing period. This results in a range of 32,800 yards instead of the actual 
196,800 yards. You should see from this example that pulse returns in excess of the prt of 
the radar system result in ambiguous ranges while pulse returns within the prt limits 
result in normal (unambiguous) ranges. The maximum unambiguous range for a given 
radar system can be determined by the following formula: 

Figure 1-4 Maximum unambiguous range 
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Q3. What is the speed of electromagnetic energy traveling through air? 

Q4. How much time is required for electromagnetic energy to travel 1 nautical mile and 
return to the source? 

Q5. In addition to recovery time, what determines the minimum range of a radar set? 

PULSE-REPETITION FREQUENCY AND POWER CALCULATIONS.—The energy 
content of a continuous-wave radar transmission may be easily figured because the 
transmitter operates continuously. However, pulsed radar transmitters are switched on 
and off to provide range timing information with each pulse. The resulting waveform for 
a transmitter was shown in figure 1-3. The amount of energy in this waveform is 
important because maximum range is directly related to transmitter output power. The 
more energy the radar system transmits, the greater the target detection range will be. The 
energy content of the pulse is equal to the PEAK (maximum) POWER LEVEL of the 
pulse multiplied by the pulse width. However, meters used to measure power in a radar 
system do so over a period of time that is longer than the pulse width. For this reason, 
pulse-repetition time is included in the power calculations for transmitters. Power 
measured over such a period of time is referred to as AVERAGE POWER. Figure 1-5 
illustrates the way this average power would be shown as the total energy content of the 
pulse. The shaded area represents the total energy content of the pulse; the crosshatched 
area represents average power and is equal to peak power spread out over the prt. (Keep 
in mind, as you look at figure 1-5, that no energy is actually present between pulses in a 
pulsed radar system. The figure is drawn just to show you how average power is 
calculated.) Pulse-repetition time is used to help figure average power because it defines 
the total time from the beginning of one pulse to the beginning of the next pulse. Average 
power is figured as follows: 
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Because 1/prt is equal to prf, the formula may be written as follows: 

The product of pulse width (pw) and pulse-repetition frequency (prf) in the above 
formula is called the DUTY CYCLE of a radar system. The duty cycle is a ratio of the 
time on to the time off of the transmitter, as shown in figure 1-6. The duty cycle is used to 
calculate both the peak power and average power of a radar system. The formula for duty 
cycle is shown below: 

NOTE: Pulse repetition frequency (prf) and pulse repetition rate (prr) are interchangeable 
terms. 

Figure 1-5 Pulse energy content 
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Since the duty cycle of a radar is usually known, the most common formula for average 
power is expressed as: 

Transposing the above formula gives us a common formula for peak power: 

Peak power must be calculated more often than average power. This is because, as 
previously mentioned, most measurement instruments measure average power directly. 
An example is shown below: 

Figure 1-6 Duty cycle 
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Before figuring Pp, you must figure duty cycle as follows: 

Now that you have duty cycle, Pp may be calculated as follows: 

ANTENNA HEIGHT AND SPEED.—Another factor affecting radar range is antenna 
height. The high-frequency energy transmitted by a radar system travels in a straight line 
and does not normally bend to conform to the curvature of the earth. Because of this, the 
height of both the antenna and the target are factors in detection range. The distance to 
the horizon (in nautical miles) for a radar system varies with the height of the antenna 
according to the following formula: 
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For example, assume antenna height to be 64 feet in the following calculations: 

A target at a range greater than the radar horizon will not be detected unless it is high 
enough to be above the horizon. An example of the antenna- and target-height 
relationship is shown in figure 1-7. 

The antenna-rotation rate also affects maximum detection range. The slower an antenna 
rotates, the greater the detection range of a radar system. When the antenna is rotated at 
10 revolutions per minute (rpm), the beam of energy strikes each target for just one-half 
the time it would if the rotation were 5 rpm. 

The number of strikes per antenna revolution is referred to as HITS PER SCAN. During 
each revolution enough pulses must be transmitted to return a usable echo. 

NOTE: The more pulses transmitted to a given area (at slower antenna speeds), the 
greater the number of hits per scan. 

Figure 1-7 Radar horizon 
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As an example, if the antenna rotates at 20 rpm, it completes a revolution in 3 seconds. 
During this time, a transmitter with a prf of 200 pulses per second (pps) transmits 600 
pulses. Since 360 degrees of azimuth must be covered, the following formula shows the 
number of pulses for each degree of azimuth: 

Such a low number of pulses for any given target area greatly increases the likelihood 
that some targets will be missed entirely; therefore, prf and antenna speed must be 
matched for maximum efficiency. 

Q6. Atmospheric interference with the travel of electromagnetic energy increases with 
what rf energy characteristic? 

Q7. How is prt related to prf? 

Q8. What type of radar transmitter power is measured over a period of time? 

Q9. What term is used to describe the product of pulse width and pulse-repetition 
frequency? 
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1.2.2 Bearing 

The TRUE BEARING (referenced to true north) of a radar target is the angle between 
true north and a line pointed directly at the target. This angle is measured in the 
horizontal plane and in a clockwise direction from true north. The bearing angle to the 
radar target may also be measured in a clockwise direction from the centerline of your 
own ship or aircraft and is referred to as the RELATIVE BEARING. Both true and 
relative bearing angles are illustrated in figure 1-8. 

The antennas of most radar systems are designed to radiate energy in a one-directional 
lobe or beam that can be moved in bearing simply by moving the antenna. As you can see 
in figure 1-9, the shape of the beam is such that the echo signal strength varies in 
amplitude as the antenna beam moves across the target. At antenna position A, the echo 
is minimal; at position B, where the beam axis is pointing directly at the target, the echo 
strength is maximum. Thus, the bearing angle of the target can be obtained by moving the 
antenna to the position at which the echo is strongest. In actual practice, search radar 
antennas move continuously; the point of maximum echo return is determined by the 
detection circuitry as the beam passes the target or visually by the operator. Weapons-
control and guidance radar systems are positioned to the point of maximum signal return 
and maintained at that position either manually or by automatic tracking circuits. 

Figure 1-8 True and relative bearings 
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1.2.3 Altitude 

Many radar systems are designed to determine only the range and bearing of an object. 
Such radar systems are called TWO-DIMENSIONAL (2D) radars. In most cases these 
systems are further described as SEARCH RADAR SYSTEMS and function as early-
warning devices that search a fixed volume of space. The range and bearing coordinates 
provide enough information to place the target in a general area with respect to the radar 
site and to determine distance, direction of travel, and relative speed. However, when 
action must be taken against an airborne target, altitude must be known as well. A search 
radar system that detects altitude as well as range and bearing is called a THREE-
DIMENSIONAL (3D) radar. 

Figure 1-9 Determination of bearing 
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Altitude- or height-finding search radars use a beam that is very narrow in the vertical 
plane. The beam is scanned in elevation, either mechanically or electronically, to pinpoint 
targets. Height-finding radar systems that also determine bearing must have a beam that 
is very narrow in both the vertical and horizontal planes. An electronic elevation-
scanning pattern for a search radar set is illustrated in figure 1-10. Lines originating at the 
antenna indicate the number of beam positions required for complete elevation coverage. 
In practice the beams overlap slightly to prevent any gaps in the coverage. Each beam 
position corresponds to a slight change in either the frequency or phase of the radiated 
energy. A change in either phase or frequency of the energy causes it to leave the antenna 
at a different angle. Thus, the frequency or phase can be predetermined to create an 
orderly scanning pattern that covers the entire vertical plane. Electronic scanning permits 
automatic compensation for an unstable radar platform (site), such as a ship at sea. Error 
signals are produced by the roll and pitch of the ship and are used to correct the radar 
beam to ensure complete elevation coverage. 

Mechanical elevation scanning is achieved by mechanically moving the antenna or 
radiation source. Weapons-control and tracking radar systems commonly use mechanical 
elevation scanning techniques. Most electronically scanned radar systems are used as air 
search radars. Some older air-search radar systems use a mechanical elevation scanning 
device; however, these are being replaced by electronically scanned radar systems. 

Figure 1-10 Electronic elevation scan 
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Q10. What type of target bearing is referenced to your ship? 

Q11. What type of radar detects range, bearing, and height? 

Q12. What characteristic(s) of radiated energy is (are) altered to achieve electronic 
scanning? 

1.2.4 Target Resolution 

The TARGET RESOLUTION of a radar is its ability to distinguish between targets that 
are very close together in either range or bearing. Weapons-control radar, which requires 
great precision, should be able to distinguish between targets that are only yards apart. 
Search radar is usually less precise and only distinguishes between targets that are 
hundreds of yards or even miles apart. Resolution is usually divided into two categories; 
RANGE RESOLUTION and BEARING RESOLUTION. 

1.2.4.1 Range Resolution 

Range resolution is the ability of a radar system to distinguish between two or more 
targets on the same bearing but at different ranges. The degree of range resolution 
depends on the width of the transmitted pulse, the types and sizes of targets, and the 
efficiency of the receiver and indicator. Pulse width is the primary factor in range 
resolution. A well-designed radar system, with all other factors at maximum efficiency, 
should be able to distinguish targets separated by one-half the pulse width time. 
Therefore, the theoretical range resolution of a radar system can be calculated from the 
following formula: 
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The above formula is often written as: 

For example, if a radar system has a pulse width of 5 microseconds, the range resolution 
is calculated as follows: 

In the above example, targets on the same bearing would have to be separated by more 
than 820 yards to show up as two targets on your indicator. 

1.2.4.2 Bearing Resolution 

Bearing, or azimuth, resolution is the ability of a radar system to separate objects at the 
same range but at different bearings. The degree of bearing resolution depends on radar 
beam width and the range of the targets. Range is a factor in bearing resolution because 
the radar beam spreads out as range increases. A RADAR BEAM is defined in width in 
terms of HALF-POWER POINTS. All the points off the centerline of the beam that are at 
one-half the power level at the center are plotted to define beam width. When the half-
power points are connected to the antenna by a curve, such as that shown in figure 1-11, 
the resulting angular width of the curve is called the ANTENNA BEAM WIDTH. The 
physical size and shape of the antenna determines beam width. Beam width can vary 
from about 1 degree up to 60 degrees. In figure 1-11, only the target within the half-
power points will reflect a useful echo. Two targets at the same range must be separated 
by at least one beam width to be distinguished as two objects. 
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1.2.5 Radar Accuracy 

Radar accuracy is a measure of the ability of a radar system to determine the correct 
range, bearing, and, in some cases, height of an object. The degree of accuracy is 
primarily determined by the resolution of the radar system. Some additional factors 
affecting accuracy are pulse shape and atmospheric conditions. 

1.2.5.1 Pulse Shape 

In the case of a pulse radar, the shape and width of the rf pulse influences minimum 
range, range accuracy, and maximum range. The ideal pulse shape is a square wave 
having vertical leading and trailing edges. However, equipments do not usually produce 
the ideal waveforms. 

The factors influencing minimum range are discussed first. Since the receiver cannot 
receive target reflections while the transmitter is operating, you should be able to see that 
a narrow pulse is necessary for short ranges. A sloping trailing edge extends the width of 
the transmitter pulse, although it may add very little to the total power generated. 
Therefore, along with a narrow pulse, the trailing edge should be as near vertical as 
possible. 

Figure 1-11 Beam half-power points 
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A sloping leading edge also affects minimum range as well as range accuracy since it 
provides no definite point from which to measure elapsed time on the indicator time base. 
Using a starting point at the lower edge of the pulse’s leading edge would increase 
minimum range. Using a starting point high up on the slope would reduce the accuracy of 
range measurements at short ranges which are so vital for accurate solution of the fire-
control problem. 

Maximum range is influenced by pulse width and pulse repetition frequency (prf). Since 
a target can reflect only a very small part of the transmitted power, the greater the 
transmitted power, the greater the strength of the echo that could be received. Thus, a 
transmitted pulse should quickly rise to its maximum amplitude, remain at this amplitude 
for the duration of the desired pulse width, and decay instantaneously to zero. Figure 1-12 
illustrates the effects of pulse shapes. 

1.2.5.2 Atmospheric Conditions 

Electromagnetic wavefronts travel through empty space in straight lines at the speed of 
light, but the REFRACTIVE INDEX of the atmosphere affects both the travel path and 
the speed of the electromagnetic wavefront. The path followed by electromagnetic energy 
in the atmosphere, whether direct or reflected, usually is slightly curved; and the speed is 
affected by temperature, atmospheric pressure, and the amount of water vapor present in 
the atmosphere, which all affect the refractive index. As altitude increases, the combined 
effects of these influences, under normal atmospheric conditions, cause a small, uniform 
increase in signal speed. This increase in speed causes the travel path to curve slightly 
downward, as shown in figure 1-13. The downward curve extends the radar horizon 
beyond a line tangent to the earth, as illustrated in figure 1-14. 

Figure 1-12 Pulse shapes and effects 
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The reason for the downward curve can be illustrated using line AB in figure 1-13. Line 
AB represents the surface of a wavefront with point A higher in altitude than point B. As 
wavefront AB moves to the point represented by A’B’, the speed at A and A’ is faster 
than the speed at B and B’ since A and A’ are at a greater altitude. Therefore, in a given 
time, the upper part of the wavefront moves farther than the lower part. The wavefront 
leans slightly forward as it moves. Since the direction of energy propagation is always 
perpendicular to the surface of a wavefront, the tilted wavefront causes the energy path to 
curve downward. 

Figure 1-13 Wavefront path 

Figure 1-14 Extension of the radar horizon 
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REFRACTION is the bending of electromagnetic waves caused by a change in the 
density of the medium through which the waves are passing. A visible example of 
electromagnetic refraction is the apparent displacement of underwater objects caused by 
the bending of light as it passes from the atmosphere into the water. An INDEX OF 
REFRACTION has been established which indicates the degree of refraction, or bending, 
caused by different substances. Because the density of the atmosphere changes with 
altitude, the index of refraction changes gradually with height. 

The temperature and moisture content of the atmosphere normally decrease uniformly 
with an increase in altitude. However, under certain conditions the temperature may first 
increase with height and then begin to decrease. Such a situation is called a temperature 
inversion. An even more important deviation from normal may exist over the ocean. 
Since the atmosphere close to the surface over large bodies of water may contain more 
than a normal amount of moisture, the moisture content may decrease more rapidly at 
heights just above the sea. This effect is referred to as MOISTURE LAPSE. 

Either temperature inversion or moisture lapse, alone or in combination, can cause a large 
change in the refraction index of the lowest few-hundred feet of the atmosphere. The 
result is a greater bending of the radar waves passing through the abnormal condition. 
The increased bending in such a situation is referred to as DUCTING and may greatly 
affect radar performance. The radar horizon may be extended or reduced, depending on 
the direction the radar waves are bent. The effect of ducting on radar waves is illustrated 
in figure 1-15. 

Figure 1-15 Ducting effect on the radar wave 
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Another effect of the atmosphere on radar performance is caused by particles suspended 
in the air. Water droplets and dust particles diffuse radar energy through absorption, 
reflection, and scattering so less energy strikes the target. Consequently, the return echo 
is smaller. The overall effect is a reduction in usable range that varies widely with 
weather conditions. The higher the frequency of a radar system, the more it is affected by 
weather conditions such as rain or clouds. In some parts of the world, dust suspended in 
the air can greatly decrease the normal range of high-frequency radar. 

Q13. What term is used to describe the ability of a radar system to distinguish between 
targets that are close together? 

Q14. The degree of bearing resolution for a given radar system depends on what two 
factors? 

Q15. What happens to the speed of electromagnetic energy traveling through air as the 
altitude increases? 

Q16. What term is used to describe a situation in which atmospheric temperature first 
increases with altitude and then begins to decrease? 

1.3 RADAR PRINCIPLES OF OPERATION 

Radar systems, like other complex electronics systems, are composed of several major 
subsystems and many individual circuits. This section will introduce you to the major 
subsystems common to most radar sets. A brief functional description of subsystem 
principles of operation will be provided. A much more detailed explanation of radar 
subsystems will be given in chapters 2 and 3. Since most radar systems in use today are 
some variation of the pulse radar system, the units discussed in this section will be those 
used in pulse radar. All other types of radar use some variation of these units, and these 
variations will be explained as necessary. 
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1.3.1 RADAR COMPONENTS 

Pulse radar systems can be functionally divided into the six essential components shown 
in figure 1-16. These components are briefly described in the following paragraphs and 
will be explained in detail after that: 

• The SYNCHRONIZER (also referred to as the TIMER or KEYER) supplies the
synchronizing signals that time the transmitted pulses, the indicator, and other
associated circuits.

• The TRANSMITTER generates electromagnetic energy in the form of short,
powerful pulses.

• The DUPLEXER allows the same antenna to be used for transmitting and
receiving.

• The ANTENNA SYSTEM routes the electromagnetic energy from the
transmitter, radiates it in a highly directional beam, receives any returning echoes,
and routes those echoes to the receiver.

• The RECEIVER amplifies the weak, electromagnetic pulses returned from the
reflecting object and reproduces them as video pulses that are sent to the
indicator.

Figure 1-16 Functional block diagram of a basic radar system 
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• The INDICATOR produces a visual indication of the echo pulses in a manner
that, at a minimum, furnishes range and bearing information.

While the physical configurations of radar systems differ, any radar system can be 
represented by the functional block diagram in figure 1-16. An actual radar set may have 
several of these functional components within one physical unit, or a single one of these 
functions may require several physical units. However, the functional block diagram of a 
basic radar set may be used to analyze the operation of almost any radar set. 

In the following paragraphs, a brief description of the operation of each of the major 
components is given. 

1.3.1.1 Synchronizer (Timer) 

The synchronizer ensures that all circuits connected with the radar system operate in a 
definite timed relationship. It also times the interval between transmitted pulses to ensure 
that the interval is of the proper length. Timing pulses are used to ensure synchronous 
circuit operation and are related to the prf. The prf can be set by any stable oscillator, 
such as a sine-wave oscillator, multivibrator, or a blocking oscillator. That output is then 
applied to pulse-shaping circuits to produce timing pulses. Associated components can be 
timed by the output of the synchronizer or by a timing signal from the transmitter as it is 
turned on. 

1.3.1.2 Transmitter 

The transmitter generates powerful pulses of electromagnetic energy at precise intervals. 
The required power is obtained by using a high-power microwave oscillator, such as a 
magnetron, or a microwave amplifier, such as a klystron, that is supplied by a low-power 
rf source. (The construction and operation of microwave components can be reviewed in 
NEETS, Module 11, Microwave Principles.) The high-power generator, whether an 
oscillator or amplifier, requires operating power in the form of a properly-timed, high-
amplitude, rectangular pulse. This pulse is supplied by a transmitter unit called the 
MODULATOR. When a high-power oscillator is used, the modulator high-voltage pulse 
switches the oscillator on and off to supply high-power electromagnetic energy. When a 
microwave power amplifier is used, the modulator pulse activates the amplifier just 
before the arrival of an electromagnetic pulse from a preceding stage or a frequency-
generation source. Normally, because of the extremely high voltage involved, the 
modulator pulse is supplied to the cathode of the power tube and the plate is at ground 
potential to shield personnel from shock hazards. The modulator pulse may be more than 
100,000 volts in high-power radar transmitters. In any case, radar transmitters produce 
voltages, currents, and radiation hazards that are extremely dangerous to personnel. 
Safety precautions must always be strictly observed when working in or around a radar 
transmitter. 
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1.3.1.3 Duplexer 

A duplexer is essentially an electronic switch that permits a radar system to use a single 
antenna to both transmit and receive. The duplexer must connect the antenna to the 
transmitter and disconnect the antenna from the receiver for the duration of the 
transmitted pulse. The receiver must be completely isolated from the transmitted pulse to 
avoid damage to the extremely sensitive receiver input circuitry. After the transmitter 
pulse has ended, the duplexer must rapidly disconnect the transmitter and connect the 
receiver to the antenna. As previously mentioned, the switching time is called receiver 
recovery time, and must be very fast if close-in targets are to be detected. Additionally, 
the duplexer should absorb very little power during either phase of operation. Low-loss 
characteristics are particularly important during the receive period of duplexer operation. 
This is because the received signals are of extremely low amplitude. 

1.3.1.4 Antenna System 

The antenna system routes the pulse from the transmitter, radiates it in a directional 
beam, picks up the returning echo, and passes it to the receiver with a minimum of loss. 
The antenna system includes the antenna, transmission lines and waveguide from the 
transmitter to the antenna, and the transmission line and waveguide from the antenna to 
the receiver. In some publications the duplexer is included as a component of the antenna 
system. 

1.3.1.5 Receiver 

The receiver accepts the weak echo signals from the antenna system, amplifies them, 
detects the pulse envelope, amplifies the pulses, and then routes them to the indicator. 
One of the primary functions of the radar receiver is to convert the frequency of the 
received echo signal to a lower frequency that is easier to amplify. This is because radar 
frequencies are very high and difficult to amplify. This lower frequency is called the 
INTERMEDIATE FREQUENCY (IF). The type of receiver that uses this frequency 
conversion technique is the SUPER HETERODYNE RECEIVER. Superheterodyne 
receivers used in radar systems must have good stability and extreme sensitivity. Stability 
is ensured by careful design and the overall sensitivity is greatly increased by the use of 
many IF stages. 
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1.3.1.6 Indicator 

The indicator uses the received signals routed from the radar receiver to produce a visual 
indication of target information. The cathode-ray oscilloscope is an ideal instrument for 
the presentation of radar data. This is because it not only shows a variation of a single 
quantity, such as voltage, but also gives an indication of the relative values of two or 
more quantities. The sweep frequency of the radar indicator is determined by the pulse-
repetition frequency of the radar system. Sweep duration is determined by the setting of 
the range-selector switch. Since the indicator is so similar to an oscilloscope, the term 
RADAR SCOPE is commonly used when referring to radar indicators. 

Q17. What radar subsystem supplies timing signals to coordinate the operation of the 
complete system? 

Q18. When a transmitter uses a high-power oscillator to produce the output pulse, what 
switches the oscillator on and off? 

Q19. What radar component permits the use of a single antenna for both transmitting 
and receiving? 

1.3.2 Scanning 

Radar systems are often identified by the type of SCANNING the system uses. Scanning 
is the systematic movement of a radar beam in a definite pattern while searching for or 
tracking a target. The type and method of scanning used depends on the purpose and type 
of radar and on the antenna size and design. In some cases, the type of scan will change 
with the particular system mode of operation. For example, in a particular radar system, 
the search mode scan may be quite different from that of the track mode scan. 
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1.3.2.1 Stationary-Lobe Scanning 

A SINGLE STATIONARY-LOBE SCANNING SYSTEM is the simplest type of 
scanning. This method produces a single beam that is stationary in relation to the antenna. 
The antenna is then mechanically rotated continuously to obtain complete 360-degree 
azimuth coverage. A stationary lobe, however, cannot satisfactorily track a moving object 
because it does not provide enough information about the object’s movement to operate 
automatic tracking circuits, such as those in fire-control tracking radar. A two-
dimensional search radar, however, does use a single-lobe that is scanned in a 360-degree 
pattern because automatic tracking circuits are not normally used in 2D radars. 

Single-lobe scanning is unsuitable for use as a tracking radar for several reasons. For 
example, let’s assume that a target is somewhere on the lobe axis and the receiver is 
detecting signals reflected from the target. If these reflected signals begin to decrease in 
strength, the target likely has flown off the lobe axis. In this case, the beam must be 
moved to continue tracking. The beam might be moved by an operator tracking the target 
with an optical sight, but such tracking is slow, inaccurate, and limited by conditions of 
visibility. An automatic tracking system would require that the beam SCAN, or search, 
the target area in such a case. 

Again, assume that a missile is riding (following) the axis of a single beam. The strength 
of the signals it receives (by means of a radar receiver in the missile) will gradually 
decrease as its distance from the transmitter increases. If the signal strength decreases 
suddenly, the missile will know, from built-in detection circuitry, that it is no longer on 
the axis of the lobe. But it will not know which way to turn to get back on the axis. A 
simple beam does not contain enough information for missile guidance. 

1.3.2.2 Methods of Beam Scanning 

The two basic methods of beam scanning are MECHANICAL and ELECTRONIC. In 
mechanical scanning, the beam can be moved in various ways: (1) The entire antenna can 
be moved in the desired pattern; (2) the energy feed source can be moved relative to a 
fixed reflector; or (3) the reflector can be moved relative to a fixed source. In electronic 
scanning, the beam is effectively moved by such means as (1) switching between a set of 
feeder sources, (2) varying the phasing between elements in a multielement array, or (3) 
comparing the amplitude and phase differences between signals received by a 
multielement array. A combination of mechanical and electronic scanning is also used in 
some antenna systems. 
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MECHANICAL SCANNING.—The most common type of mechanical scanning is the 
rotation of the antenna through 360 degrees to obtain azimuth coverage. Most search 
radar sets use this method. A common form of scanning for target tracking or missile 
beam-rider systems is CONICAL (cone-like) SCANNING. This is generally 
accomplished mechanically by NUTATING the rf feed point. 

Nutation is difficult to describe in words but easy to demonstrate. Hold a pencil in two 
hands. While holding the eraser end as still as possible, swing the point in a circular 
motion. This motion of the pencil is referred to as nutation; the pencil point corresponds 
to the open, or transmitting, end of the waveguide antenna. The important fact to 
remember is that polarization of the beam is not changed during the scanning cycle. This 
means that the axis of the moving feeder does not change either horizontal or vertical 
orientation while the feeder is moving. You might compare the feeder movement to that 
of a ferris wheel; that is, the vertical orientation of each seat remains the same regardless 
of the position of the wheel. 

Recall that a waveguide is a metal pipe, usually rectangular in cross section, used to 
conduct the rf energy from the transmitter to the antenna. The open end of the waveguide 
faces the concave side of the reflector and the rf energy it emits is bounced from the 
reflector surface. 

A conical scan can be generated by nutation of the waveguide. In this process the axis of 
the waveguide itself is moved through a small conical pattern. In an actual installation of 
a nutating waveguide, the three-dimensional movement is fast and of small amplitude. To 
an observer, the waveguide appears merely to be vibrating slightly. 

By movement of either the waveguide or the antenna, you can generate a conical scan 
pattern, as shown in figure 1-17. The axis of the radar lobe is made to sweep out a cone in 
space; the apex of this cone is, of course, at the radar transmitter antenna or reflector. At 
any given distance from the antenna, the path of the lobe axis is a circle. Within the 
useful range of the beam, the inner edge of the lobe always overlaps the axis of scan. 
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Now assume that we use a conically scanned beam for target tracking. If the target is on 
the scan axis, the strength of the reflected signals remains constant (or changes gradually 
as the range changes). But if the target is slightly off the axis, the amplitude of the 
reflected signals will change at the scan rate. For example, if the target is to the left of the 
scan axis, as shown in figure 1-18, the reflected signals will be of maximum strength as 
the lobe sweeps through the left part of its cone; the signals will quickly decrease to a 
minimum as the lobe sweeps through the right part. Information on the instantaneous 
position of the beam, relative to the scan axis, and on the strength of the reflected signals 
is fed to a computer. Such a computer in the radar system is referred to as the angle-
tracking or angle-servo circuit (also angle-error detector). If the target moves off the scan 
axis, the computer instantly determines the direction and amount of antenna movement 
required to continue tracking. The computer output is used to control servomechanisms 
that move the antenna. In this way, the target is tracked accurately and automatically. 

Figure 1-17 Conical scanning. 
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Q20. What is the simplest type of scanning? 

Q21. How does the operator of a single-lobe scanning system determine when the target 
moves off the lobe axis? 

Q22. What are the two basic methods of scanning? 

Q23. Rotation of an rf-feed source to produce a conical scan pattern is identified by what 
term? 

Figure 1-18 Reflected signal strength 
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ELECTRONIC SCANNING.—Electronic scanning can accomplish lobe motion more 
rapidly than, and without the inherent maintenance disadvantages of, the mechanical 
systems. Because electronic scanning cannot generally cover as large an area of space, it 
is sometimes combined with mechanical scanning in particular applications. 

With MONOPULSE (SIMULTANEOUS) LOBING, all range, bearing, and elevation-
angle information of a target is obtained from a single pulse. Monopulse scanning is used 
in fire-control tracking radars. 

For target tracking, the radar discussed here produces a narrow circular beam of pulsed-rf 
energy at a high pulse-repetition rate. Each pulse is divided into four signals which are 
equal both in amplitude and phase. These four signals are radiated at the same time from 
each of four feedhorns that are grouped in a cluster. The resulting radiated energy is 
focused into a beam by a microwave lens. Energy reflected from targets is refocused by 
the lens back into the feedhorns. The total amount of the energy received by each horn 
varies, depending on the position of the target relative to the beam axis. This is illustrated 
in figure 1-19 for four targets at different positions with respect to the beam axis. Note 
that a phase inversion takes place at the microwave lens similar to the image inversion 
that takes place in an optical system. 

Figure 1-19 Monopulse scanning 
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The amplitude of returned signals received by each horn is continuously compared with 
those received in the other horns. Error signals are generated which indicate the relative 
position of the target with respect to the axis of the beam. Angle servo circuits receive 
these error signals and correct the position of the radar beam to keep the beam axis on 
target. 

The TRAVERSE (BEARING) SIGNAL is made up of signals from horn A added to C 
and from horn B added to D. By waveguide design, the sum of B and D is made 180 
degrees out of phase with the sum of A and C. These two are combined and the traverse 
signal is the difference of (A + C) − (B + D). Since the horns are positioned as shown in 
figure 1-19, the relative amplitudes of the horn signals give an indication of the 
magnitude of the traverse error. The elevation signal consists of the signals from horns C 
and D added 180 degrees out of phase with horns A and B [(A + B) − (C + D)]. The sum, 
or range, signal is composed of signals from all four feedhorns added together in phase. It 
provides a reference from which target direction from the center of the beam axis is 
measured. The range signal is also used as a phase reference for the traverse and 
elevation-error signals. 

The traverse and elevation error signals are compared in the radar receiver with the range 
or reference signal. The output of the receiver may be either positive or negative pulses; 
the amplitudes of the pulses are proportional to the angle between the beam axis and a 
line drawn to the target. The polarities of the output pulses indicate whether the target is 
above or below, to the right or to the left of the beam axis. Of course, if the target is 
directly on the line of sight, the output of the receiver is zero and no angle-tracking error 
is produced. 

An important advantage of a monopulse-tracking radar over radar using conical scan is 
that the instantaneous angular measurements are not subject to errors caused by target 
SCINTILLATION. Scintillation can occur as the target maneuvers or moves and the 
radar pulses bounce off different areas of the target. This causes random reflectivity and 
may lead to tracking errors. Monopulse tracking radar is not subject to this type of error 
because each pulse provides an angular measurement without regard to the rest of the 
pulse train; no such cross-section fluctuations can affect the measurement. An additional 
advantage of monopulse tracking is that no mechanical action is required. 

ELECTRONIC SCANNING used in search radar systems was explained in general terms 
earlier in this chapter during the discussion of elevation coverage. This type of electronic 
scanning is often called FREQUENCY SCANNING. An in-depth explanation of 
frequency scanning theory can be found in the fire control technician rate training 
manuals. 
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1.4 RADAR TRANSMISSION METHODS 

Radar systems are normally divided into operational categories based on energy 
transmission methods. Up to this point, we have mentioned only the pulse method of 
transmission to illustrate basic radar concepts. Although the pulse method is the most 
common method of transmitting radar energy, two other methods are sometimes used in 
special applications. These are the continuous-wave (cw) method and the frequency 
modulation (fm) method. All three basic transmission methods are often further 
subdivided to designate specific variations or combinations. 

1.4.1 Continuous-Wave Method 

When radio-frequency energy transmitted from a fixed point continuously strikes an 
object that is either moving toward or away from the source of the energy, the frequency 
of the reflected energy is changed. This shift in frequency is known as the DOPPLER 
EFFECT. The difference in frequency between the transmitted and reflected energy 
indicates both the presence and the speed of a moving target. 

1.4.1.1 Doppler Effect 

A common example of the Doppler effect in action is the changing pitch of the whistle of 
an approaching train. The whistle appears to change pitch from a high tone, as the train 
approaches, to a lower tone as it moves away from the observer. As the train approaches, 
an apparent increase in frequency (an increase in pitch) is heard; as the train moves away, 
an apparent decrease in frequency (a decrease in pitch) is heard. This pitch variation is 
known as the Doppler effect. 

Let’s examine the reason for this apparent change in pitch. Assume that the transmitter 
emits an audio signal at a frequency of 60 hertz and that the transmitter is traveling at a 
velocity of 360 feet per second (fps). At the end of 1 second, the transmitter will have 
moved from point P to point P1 as shown in view A of figure 1-20. The total distance 
from point P to the observer is 1,080 feet. The velocity of sound is 1,080 feet per second; 
thus, a sound emitted at point P will reach the observer in 1 second. To find the 
wavelength of this transmitted signal, you divide the velocity of the signal (1,080 fps) by 
the frequency (60 hertz). The result is 18 feet, as shown below: 
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In 1 second the transmitter moves 360 feet and transmits 60 hertz. At the end of 1 second, 
the first cycle of the transmitted signal reaches the observer, just as the sixtieth cycle is 
leaving the transmitter at point P1. Under these conditions the 60 hertz emitted is located 
between the observer and point P1. Notice that this distance is only 720 feet (1,080 minus 
360). The 60 hertz is spread over the distance from point P1 to the observer and has a 
wavelength of just 12 feet (720 divided by 60). To find the new frequency, use the 
following formula: 

Figure 1-20 Transmitter moving relative to an observer 
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The original frequency, 60 hertz, has changed to an apparent frequency of 90 hertz. This 
new frequency only applies to the observer. Notice that the Doppler frequency variation 
is directly proportional to the velocity of the approaching transmitter. The faster the 
transmitter moves toward the observer, the greater the number of waves that will be 
crowded into the space between the transmitter and the observer. 

Suppose the transmitter were stationary and the observer moving. When approaching the 
transmitter, the observer would encounter waves per unit of time. As a result, the 
observer would hear a higher pitch than the transmitter would actually emit. 

If the transmitter were traveling away from the observer, as shown in view B of figure 1-
20, the first cycle would leave the transmitter at point P and the sixtieth at point P2. The 
first cycle would reach the observer when the transmitter reached P2. You would then 
have 60 cycles stretched out over 1,080 plus 360 feet, a total of 1,440 feet. The 
wavelength of these 60 hertz is 1,440/60, or 24 feet. The apparent frequency is 1,080 
divided by 24, or 45 hertz. 

1.4.1.2 Uses of CW Doppler System 

The continuous-wave, or Doppler, system is used in several ways. In one radar 
application, the radar set differentiates between the transmitted and reflected wave to 
determine the speed of the moving object. 

The Doppler method is the best means of detecting fast-moving objects that do not 
require range resolution. As a moving object approaches the transmitter, it encounters and 
reflects more waves per unit of time. The amount of frequency shift produced is very 
small in relation to the carrier frequency. This is because the velocity of propagation of 
the signal is very high compared to the speed of the target. However, because the carrier 
frequencies used in radar are high, larger frequency shifts (in the audio frequency range) 
are produced. The amount of shift is proportional to the speed of the reflecting object. 
One-quarter cycle shift at 10,000 megahertz will provide speed measurements accurate to 
a fraction of a percent. 

Radar Fundamentals – E05-014 

1-38



NEETS MODULE 18-Radar Principles 

If an object is moving, its velocity, relative to the radar, can be detected by comparing the 
transmitter frequency with the echo frequency (which differs because of the Doppler 
shift). The DIFFERENCE or BEAT FREQUENCY, sometimes called the DOPPLER 
FREQUENCY (fd), is related to object velocity. 

The separation of the background and the radar contact is based on the Doppler frequency 
that is caused by the reflection of the signal from a moving object. Disadvantages of the 
Doppler system are that it does not determine the range of the object, nor is it able to 
differentiate between objects when they lie in the same direction and are traveling at the 
same speed. Moreover, it does not "see" stationary or slow moving objects, which a pulse 
radar system can detect. 

To track an object with cw Doppler, you must determine the radar range. Since the 
Doppler frequency is not directly related to range, another method is needed to determine 
object range. By using two separate transmitters that operate at two different frequencies 
(f1 and f 2), you can determine range by measuring the relative phase difference between 
the two Doppler frequencies. In such a system, a mixer is used to combine the two 
transmitted frequencies and to separate the two received frequencies. This permits the use 
of one transmitting and receiving antenna. 

Instead of using two transmitter frequencies, you can find the range by sweeping the 
transmitter frequency uniformly in time to cover the frequency range from f1 to f2. The 
beat, or difference, frequency between the transmitted and received signals is then a 
function of range. In this type of radar, the velocity as well as range is measured. 

Q24. The Doppler effect causes a change in what aspect of rf energy that strikes a 
moving object? 

Q25. The Doppler variation is directly proportional to what radar contact 
characteristic? 

Q26. The Doppler method of object detection is best for what type objects? 

Q27. The beat frequency in a swept-frequency transmitter provides what contact 
information? 
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1.4.2 Frequency-Modulation Method 

In the frequency-modulation method, the transmitter radiates radio-frequency waves. The 
frequency of these rf waves is continually increasing and decreasing from a fixed 
reference frequency. At any instant, the frequency of the returned signal differs from the 
frequency of the radiated signal. The amount of the difference frequency is determined by 
the time it took the signal to travel the distance from the transmitter to the object. 

An example of a frequency-modulated signal, plotted against time, is shown in figure 1-
21. As shown, the 420-megahertz frequency increases linearly to 460 megahertz and then
quickly drops to 420 megahertz again. When the frequency drops to 420 megahertz the
frequency cycle starts over again.

The frequency regularly changes 40 megahertz with respect to time; therefore, its value at 
any time during its cycle can be used as the basis for computing the time elapsed after the 
start of the frequency cycle. For example, at T0 the transmitter sends a 420-megahertz 
signal toward an object. It strikes the object and returns to the receiver at T1, when the 
transmitter is sending out a new frequency of 440 megahertz. At T1, the 420-megahertz 
returned signal and the 440-megahertz transmitter signal are fed to the receiver 
simultaneously. When the two signals are mixed in the receiver, a beat frequency results. 
The beat frequency varies directly with the distance to the object, increasing as the 
distance increases. Using this information, you can calibrate a device that measures 
frequency to indicate range. 

Figure 1-21 Frequency-modulation chart 
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This system works well when the detected object is stationary. It is used in aircraft 
altimeters which give a continuous reading of the height above the earth of the aircraft. 
The system is no t satisfactory for locating moving objects. This is because moving 
targets produce a frequency shift in the re turned signal because of the Doppler effect; 
this affects the accuracy of the range measurement. 

1.4.3 Pulse-Modulation Method 

The pulse-modulation method of energy transmission was analyzed to some extent earlier 
in this chapter. As the previous discussions indicated, radio-frequency energy can also be 
transmitted in very short bursts, called pulses. These pulses are of extremely short time 
duration, usually on the order of 0.1 microsecond to approximately 50 microseconds. In 
this method, the transmitter is turned on for a very short time and the pulse of radio-
frequency energy is transmitted, as shown in view A of figure 1-22. The transmitter is 
then turned off, and the pulse travels outward from the transmitter at the velocity of light 
(view B). When the pulse strikes an object (view C), it is reflected and begins to travel 
back toward the radar system, still moving at the same velocity (view D). The pulse is 
then received by the radar system (view E). The time interval between transmission and 
reception is computed and converted into a visual indication of range in miles or yards. 
The radar cycle then starts over again by transmitting another pulse (view F). This 
method does not depend on the relative frequency of the returned signal or on the motion 
of the target; therefore, it has an important advantage over cw and fm methods. 

Figure 1-22 Pulse detection 
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1.4.4 Pulse-Doppler Method 

Pulse radar systems may be modified to use the Doppler effect to detect a moving object. 

A requirement for any Doppler radar is COHERENCE; that is, some definite phase 
relationship must exist between the transmitted frequency and the reference frequency, 
which is used to detect the Doppler shift of the receiver signal. Moving objects are 
detected by the phase difference between the target signal and background noise 
components. Phase detection of this type relies on coherence between the transmitter 
frequency and the receiver reference frequency. 

In coherent detection, a stable cw reference oscillator signal, which is locked in phase 
with the transmitter during each transmitted pulse, is mixed with the echo signal to 
produce a beat or difference signal. Since the reference oscillator and the transmitter are 
locked in phase, the echoes are effectively compared with the transmitter in frequency 
and phase. 

The phase relationships of the echoes from fixed objects to the transmitter is constant and 
the amplitude of the beat signal remains constant. A beat signal of varying amplitude 
indicates a moving object. This is because the phase difference between the reference 
oscillator signal and the echo signal changes as the range to the reflecting object changes. 
The constant amplitude beat signal is filtered out in the receiver. The beat signal of 
varying amplitude is sent to the radar indicator scope for display. 

Q28. What factor determines the difference between the transmitted frequency and the 
received frequency in an fm transmitter? 

Q29. What type of objects are most easily detected by an fm system? 

Q30. What transmission method does NOT depend on relative frequency or target 
motion? 

Q31. What transmission method uses a stable cw reference oscillator, which is locked in 
phase with the transmitter frequency? 
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1.5 RADAR CLASSIFICATION AND USE 

Radar systems, like cars, come in a variety of sizes and have different performance 
specifications. Some radar systems are used for air-traffic control at airports and others 
are used for long-range surveillance and early-warning systems. A radar system is the 
heart of a missile guidance system. Small portable radar systems that can be maintained 
and operated by one person are available as well as systems that occupy several large 
rooms. 

1.5.1 Military Classification of Radar Systems 

The large number of radar systems used by the military has forced the development of a 
joint services classification system for accurate identification. The Federal Aviation 
Agency (FAA) also makes extensive use of radar systems for commercial aircraft in-
flight and landing control, but does not use the military classification system. 

Radar systems are usually classified according to specific function and installation 
vehicle. Some common examples are listed below: 

FUNCTION INSTALLATION VEHICLE 
Search Ground or land based 
Track Airborne 
Height-finder Shipboard 

The joint-service standardized classification system further divides these broad categories 
for more precise identification. Table 1-1 is a listing of equipment identification 
indicators. Use of the table to identify a particular radar system is illustrated in figure 1-
23. Note that for simplicity, only a portion of the table has been used in the illustration.
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1.5.2 Radar Functions 

No single radar system has yet been designed that can perform all of the many radar 
functions required by the military. Some of the newer systems combine several functions 
that formerly required individual radar systems, but no single system can fulfill all the 
requirements of modern warfare. As a result, modern warships, aircraft, and shore 
stations usually have several radar systems, each performing a different function. 

One radar system, called SEARCH RADAR, is designed to continuously scan a volume 
of space to provide initial detection of all targets. Search radar is almost always used to 
detect and determine the position of new targets for later use by TRACK RADAR. Track 
radar provides continuous range, bearing, and elevation data on one or more targets. Most 
of the radar systems used by the military are in one of these two categories, though the 
individual radar systems vary in design and capability. 

Figure 1-23 Joint service classification system 
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Some radar systems are designed for specific functions that do not precisely fit into either 
of the above categories. The radar speed gun is an example of radar designed specifically 
to measure the speed of a target. The military uses much more complex radar systems 
that are adapted to detect only fast moving targets such as aircraft. Since aircraft usually 
move much faster than weather or surface targets, velocity-sensitive radar can eliminate 
unwanted clutter from the radar indicator. Radar systems that detect and process only 
moving targets are called MOVING-TARGET INDICATORS (mti) and are usually 
combined with conventional search radar. 

Another form of radar widely used in military and civilian aircraft is the RADAR 
ALTIMETER. Just as some surface-based radars can determine the height of a target, 
airborne radar can determine the distance from an aircraft to the ground. Many aircraft 
use radar to determine height above the ground. Radar altimeters usually use frequency-
modulated signals of the type discussed earlier in the chapter. 

1.6 RADAR TYPES 

The preceding paragraphs indicated that radar systems are divided into types based on the 
designed use. This section presents the general characteristics of several commonly used 
radar systems. Typical characteristics are discussed rather than the specific characteristics 
of any particular radar system. 

1.6.1 Search Radar 

Search radar, as previously mentioned, continuously scans a volume of space and 
provides initial detection of all targets within that space. Search radar systems are further 
divided into specific types, according to the type of object they are designed to detect. 
For example, surface-search, air-search, and height-finding radars are all types of search 
radar. 

1.6.1.1 Surface-Search Radar 

A surface-search radar system has two primary functions: (1) the detection and 
determination of accurate ranges and bearings of surface objects and low-flying aircraft 
and (2) the maintenance of a 360- degree search pattern for all objects within line-of-sight 
distance from the radar antenna. 
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The maximum range ability of surface-search radar is primarily limited by the radar 
horizon; therefore, higher frequencies are used to permit maximum reflection from small, 
reflecting areas, such as ship masthead structures and the periscopes of submarines. 
Narrow pulse widths are used to permit a high degree of range resolution at short ranges 
and to achieve greater range accuracy. High pulse-repetition rates are used to permit a 
maximum definition of detected objects. Medium peak power can be used to permit the 
detection of small objects at line-of-sight distances. Wide vertical-beam widths permit 
compensation for the pitch and roll of own ship and detection of low flying aircraft. 
Narrow horizontal beam widths permit accurate bearing determination and good bearing 
resolution. For example, a common shipboard surface-search radar has the following 
design specifications: 

• Transmitter frequency 5,450-5,825 MHz
• Pulse width .25 or 1.3 microseconds
• Pulse-repetition rate between 625 and 650 pulses per second
• Peak power between 190 and 285 kW
• Vertical beam width between 12 and 16 degrees
• Horizontal beam width 1.5 degrees

Surface-search radar is used to detect the presence of surface craft and low flying aircraft 
and to determine their presence. Shipboard surface-search radar provides this type of 
information as an input to the weapons system to assist in the engagement of hostile 
targets by fire-control radar. Shipboard surface search radar is also used extensively as a 
navigational aid in coastal waters and in poor weather conditions. A typical surface-
search radar antenna is shown in figure 1-24. 

Figure 1-24 Surface-search radar 
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Q32. What type of radar provides continuous range, bearing, and elevation data on an 
object? 

Q33. Radar altimeters use what type of transmission signal? 

Q34. A surface-search radar normally scans how many degrees of azimuth? 

Q35. What limits the maximum range of a surface-search radar? 

Q36. What is the shape of the beam of a surface-search radar? 

1.6.1.2 Air-Search Radar 

Air-search radar systems initially detect and determine the position, course, and speed of 
air targets in a relatively large area. The maximum range of air-search radar can exceed 
300 miles, and the bearing coverage is a complete 360-degree circle. Air-search radar 
systems are usually divided into two categories, based on the amount of position 
information supplied. As mentioned earlier in this chapter, radar sets that provide only 
range and bearing information are referred to as two-dimensional, or 2D, radars. Radar 
sets that supply range, bearing, and height are called three-dimensional, or 3D, radars. 
(3D radar will be covered in the next section.) The coverage pattern of a typical 2D radar 
system is illustrated in figure 1-25. A typical 2D air-search radar antenna is shown in 
figure 1-26. 
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Figure 1-25 2D radar coverage pattern 

Figure 1-26 2D air-search radar 
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Relatively low transmitter frequencies are used in 2D search radars to permit long-range 
transmissions with minimum attenuation. Wide pulse widths and high peak power are 
used to aid in detecting small objects at great distances. Low pulse-repetition rates are 
selected to permit greater maximum range. A wide vertical-beam width is used to ensure 
detection of objects from the surface to relatively high altitudes and to compensate for 
pitch and roll of own ship. The output characteristics of specific air-search radars are 
classified; therefore, they will not be discussed. 

Air-search radar systems are used as early-warning devices because they can detect 
approaching enemy aircraft or missiles at great distances. In hostile situations, early 
detection of the enemy is vital to a successful defense against attack. Antiaircraft 
defenses in the form of shipboard guns, missiles, or fighter planes must be brought to a 
high degree of readiness in time to repel an attack. Range and bearing information, 
provided by air-search radars, used to initially position a fire-control tracking radar on a 
target. Another function of the air-search radar system is guiding combat air patrol (CAP) 
aircraft to a position suitable to intercept an enemy aircraft. In the case of aircraft control, 
the guidance information is obtained by the radar operator and passed to the aircraft by 
either voice radio or a computer link to the aircraft. 

1.6.1.3 Height-Finding Search Radar 

The primary function of a height-finding radar (sometimes referred to as a three-
coordinate or 3D radar) is that of computing accurate ranges, bearings, and altitudes of 
aircraft targets detected by air search radars. Height-finding radar is also used by the 
ship’s air controllers to direct CAP aircraft during interception of air targets. Modern 3D 
radar is often used as the primary air-search radar (figure 1-27). This is because of its 
high accuracy and because the maximum ranges are only slightly less than those 
available from 2D radar. 

Figure 1-27 3D air-search radar 
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The range capability of 3D search radar is limited to some extent by an operating 
frequency that is higher than that of 2D radar. This disadvantage is partially offset by 
higher output power and a beamwidth that is narrower in both the vertical and horizontal 
planes. 

The 3D radar system transmits several narrow beams to obtain altitude coverage and, for 
this reason, compensation for roll and pitch must be provided for shipboard installations 
to ensure accurate height information. 

Applications of height-finding radars include the following: 

• Obtaining range, bearing, and altitude data on enemy aircraft and missiles to assist
in the control of CAP aircraft

• Detecting low-flying aircraft
• Determining range to distant land masses
• Tracking aircraft over land
• Detecting certain weather phenomena
• Tracking weather balloons
• Providing precise range, bearing, and height information for fast, accurate initial

positioning of fire-control tracking radars

Q37. Air-search radar is divided into what two basic categories? 

Q38. What position data are supplied by 2D search radar? 

Q39. Why do 2D air-search radars use relatively low carrier frequencies and low pulse-
repetition rates? 

Q40. Why is the range capability of 3D radar usually less than the range of 2D radar? 
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1.6.2 Tracking Radar 

Radar that provides continuous positional data on a target is called tracking radar. Most 
tracking radar systems used by the military are also fire-control radar; the two names are 
often used interchangeably. 

Fire-control tracking radar systems usually produce a very narrow, circular beam. 

Fire-control radar must be directed to the general location of the desired target because of 
the narrow-beam pattern. This is called the DESIGNATION phase of equipment 
operation. Once in the general vicinity of the target, the radar system switches to the 
ACQUISITION phase of operation. During acquisition, the radar system searches a small 
volume of space in a prearranged pattern until the target is located. When the target is 
located, the radar system enters the TRACK phase of operation. Using one of several 
possible scanning techniques, the radar system automatically follows all target motions. 
The radar system is said to be locked on to the target during the track phase. The three 
sequential phases of operation are often referred to as MODES and are common to the 
target-processing sequence of most fire control radars. 

Typical fire-control radar characteristics include a very high prf, a very narrow pulse 
width, and a very narrow beam width. These characteristics, while providing extreme 
accuracy, limit the range and make initial target detection difficult. A typical fire-control 
radar antenna is shown in figure 1-28. In this example the antenna used to produce a 
narrow beam is covered by a protective radome. 

Figure 1-28 Fire-control radar 
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1.6.3 Missile-Guidance Radar 

A radar system that provides information used to guide a missile to a hostile target is 
called GUIDANCE RADAR. Missiles use radar to intercept targets in three basic ways: 
(1) Beam-rider missiles follow a beam of radar energy that is kept continuously pointed
at the desired target; (2) homing missiles detect and home in on radar energy reflected
from the target; the reflected energy is provided by a radar transmitter either in the
missile or at the launch point and is detected by a receiver in the missile; (3) passive
homing missiles home in on energy that is radiated by the target. Because target position
must be known at all times, a guidance radar is generally part of, or associated with, a
fire-control tracking radar. In some instances, three radar beams are required to provide
complete guidance for a missile. The beam riding missile, for example, must be launched
into the beam and then must ride the beam to the target. Initially, a wide beam is radiated
by a capture radar to gain (capture) control of the missile. After the missile enters the
capture beam, a narrow beam is radiated by a guidance radar to guide the missile to the
target. During both capture and guidance operations, a tracking radar continues to track
the target. Figure 1-29 illustrates the relationships of the three different radar beams.

Q41. Fire-control tracking radar most often radiates what type of beam? 

Q42. Tracking radar searches a small volume of space during which phase of operation? 

Q43. What width is the pulse radiated by fire-control tracking radar? 

Figure 1-29 Beam relationship of capture, guidance, and track beams 
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Q44. Which beam of missile-guidance radar is very wide? 

1.6.4 Carrier-Controlled Approach (CCA) and Ground-Controlled Approach 
(GCA Radar) 

CARRIER-CONTROLLED APPROACH and GROUND-CONTROLLED APPROACH 
radar systems are essentially shipboard and land-based versions of the same type of radar. 
Shipboard CCA radar systems are usually much more sophisticated systems than GCA 
systems. This is because of the movements of the ship and the more complicated landing 
problems. Both systems, however, guide aircraft to safe landing under conditions 
approaching zero visibility. By means of radar, aircraft are detected and observed during 
the final approach and landing sequence. Guidance information is supplied to the pilot in 
the form of verbal radio instructions, or to the automatic pilot (autopilot) in the form of 
pulsed control signals. 

1.6.5 Airborne Radar 

Airborne radar is designed especially to meet the strict space and weight limitations that 
are necessary for all airborne equipment. Even so, airborne radar sets develop the same 
peak power as shipboard and shore-based sets. 

As with shipboard radar, airborne radar sets come in many models and types to serve 
many different purposes. Some of the sets are mounted in blisters (or domes) that form 
part of the fuselage; others are mounted in the nose of the aircraft. 

In fighter aircraft, the primary mission of a radar is to aid in the search, interception, and 
destruction of enemy aircraft. This requires that the radar system have a tracking feature. 
Airborne radar also has many other purposes. The following are some of the general 
classifications of airborne radar: search, intercept and missile control, bombing, 
navigation, and airborne early warning. 

1.7 SUMMARY 

The following paragraphs summarize the important points of this chapter. 

RADAR is an electronic system that uses reflected electromagnetic energy to detect the 
presence and position of objects invisible to the eye. 

TARGET POSITION is defined in reference to true north, the horizontal plane, and the 
vertical plane. 
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TRUE BEARING is the angle between true north and the line of sight to the target, 
measured in a clockwise direction in the horizontal plane. 

ELEVATION ANGLE is the angle between the horizontal plane and the line of sight, 
measured in the vertical plane. 

RANGE is the distance from the radar site to the target measured along the line of sight. 

RANGE to any target can be calculated by measuring the time required for a pulse to 
travel to a target and return to the radar receiver and by dividing the elapsed time by 
12.36 microseconds. 

The MAXIMUM RANGE of a pulse radar system depends on the CARRIER 
FREQUENCY, PEAK POWER, PULSE-REPETITION FREQUENCY, and RECEIVER 
SENSITIVITY. 

PULSE-REPETITION TIME is the time between the beginning of one pulse and the 
beginning of the next pulse and is the reciprocal of prf. 

AMBIGUOUS RETURNS are echoes from targets that exceed the prt of the radar 
system and result in false range readings. 

The PEAK POWER of a radar system is the total energy contained in a pulse. Peak 
power is obtained by multiplying the maximum power level of a pulse by the pulse width. 

Since most instruments are designed to measure AVERAGE POWER over a period of 
time, prt must be included in transmitter power measurements. 

The product of pw and prf is called the DUTY CYCLE of a radar system and is the ratio 
of transmitter time on to time off. 

Antenna height and ROTATION SPEED affect radar range. Since high-frequency energy 
does not normally bend to follow the curvature of the earth, most radar systems cannot 
detect targets below the RADAR HORIZON. 

The slower an antenna rotates, the larger the HITS PER SCAN value. The likelihood that 
a target will produce a usable echo is also increased. 

The bearing to a target may be referenced to true north or to your own ship. Bearing 
referenced to true north is TRUE BEARING and bearing referenced to your ship is 
RELATIVE BEARING, as shown in the illustration. The bearing angle is obtained by 
moving the antenna to the point of maximum signal return. 
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Radar systems that detect only range and bearing are called TWO-DIMENSIONAL (2D) 
radars. Radars that detect height as well as range and bearing are called THREE-
DIMENSIONAL (3D) RADARS. 

The target RESOLUTION of a radar system is its ability to distinguish between targets 
that are very close together. 

RANGE RESOLUTION is the ability to distinguish between two or more targets on the 
same bearing and is primarily dependent on the pulse width of the radar system. 

BEARING RESOLUTION is the ability of a radar to separate targets at the same range 
but different bearings. The degree of bearing resolution is dependent on beam width and 
range. The accuracy of radar is largely dependent on resolution. 

ATMOSPHERIC CONDITIONS affect the speed and direction of travel of 
electromagnetic wavefronts traveling through the air. Under normal conditions, the 
wavefronts increase uniformly in speed as altitude increases which causes the travel path 
to curve downward. The downward curve extends the radar horizon as shown in the 
illustration. The density of the atmosphere, the presence of water vapor, and temperature 
changes also directly affect the travel of electromagnetic wavefronts. 

The major components in a typical PULSE RADAR SYSTEM are shown in the 
illustration. The SYNCHRONIZER supplies the timing signals to coordinate the 
operation of the entire system. The TRANSMITTER generates electromagnetic energy in 
short, powerful pulses. The DUPLEXER allows the same antenna to be used to both 
transmit and receive. The RECEIVER detects and amplifies the return signals. The 
INDICATOR produces a visual indication of the range and bearing of the echo. 

SCANNING is the systematic movement of a radar beam while searching for or tracking 
a target. 

STATIONARY-LOBE SCANNING is the simplest type of scanning and is usually 
used in 2D search radar. Monopulse scanning, used in fire-control radars, employs four 
signal quantities to accurately track moving targets. The two basic methods of scanning 
are MECHANICAL and ELECTRONIC. 

Radar systems are often divided into operational categories based on energy transmission 
methods—continuous wave (cw), frequency modulation (fm), and pulse modulation 
(pm). 
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The CONTINUOUS WAVE (cw) method transmits a constant frequency and detects 
moving targets by detecting the change in frequency caused by electromagnetic energy 
reflecting from a moving target. This change in frequency is called the DOPPLER SHIFT 
or DOPPLER EFFECT. 

In the FREQUENCY MODULATION (fm) method, a signal that constantly changes in 
frequency around a fixed reference is used to detect stationary objects. 

The PULSE-MODULATION (pm) METHOD uses short pulses of energy and 
relatively long listening times to accurately determine target range. Since this method 
does not depend on signal frequency or target motion, it has an advantage over cw and fm 
methods. It is the most common type of radar. 

Radar systems are also classified by function. SEARCH RADAR continuously scans a 
volume of space and provides initial detection of all targets. TRACK RADAR provides 
continuous range, bearing, and elevation data on one or more specific targets. Most radar 
systems are variations of these two types. 
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ANSWERS TO QUESTIONS Q1. AND Q44. 

A1. Horizontal plane. 

A2. Range. 

A3. Approximately the speed of light (162,000 nautical miles per second). 

A4. 12.36 microseconds. 

A5. Pulse width. 

A6. Frequency. 

A7. 

A8. Average power. 

A9. Duty cycle. 

A10. Relative bearing. 

A11. Three-dimensional. 

A12. Frequency or phase. 

A13. Target resolution. 

A14. Beam width and range. 

A15. Speed increases. 

A16. Temperature inversion. 

A17. Synchronizer. 

A18. High-voltage pulse from the modulator. 
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A19. Duplexer. 

A20. Single lobe. 

A21. The reflected signals decrease in strength. 

A22. Mechanical and electronic. 

A23. Nutation. 

A24. Frequency. 

A25. Velocity. 

A26. Fast-moving targets. 

A27. Range. 

A28. Travel time. 

A29. Stationary. 

A30. Pulse modulation. 

A31. Pulse-Doppler. 

A32. Track radar. 

A33. Frequency modulated (fm). 

A34. 360 degrees. 

A35. Radar horizon. 

A36. Wide vertically, narrow horizontally. 

A37. 2D and 3D. 

A38. Range and bearing. 

A39. Increased maximum range. 

A40. Higher operating frequency. 
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A41. A narrow circular beam. 

A42. Acquisition. 

A43. Very narrow. 

A44. Capture beam. 
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